
Software Metrics Evaluation: An Open Source 
Case Study 

Sandeep Kaur#1, Navjot Kaur#2 
#Department of CSE 

GIMET Amritsar, Punjab 

Abstract— It is essential for any software to evolve so as to be 
used for large time period. It is necessitate to evolve software 
in order to do changes like adaptive, corrective, preventive 
maintenance In this paper we are presenting the results of 
study conducted on different versions of an open source 
software i.e. JStock. We calculated Object Oriented Metrics 
and investigated the changes in the measured values over 
different versions software which is developed in Java. 
Moreover we examined the applicability of Lehman’s Law of 
Software Evolution on chosen software using different 
measures plus statistical analysis of the chosen metrics. We 
originate that Lehman’s laws associated with increasing 
complexity and continuous growth are buoyed by the statistics 
and calculated metrics measure.  

Keywords— Laws of software evolution, software metrics, 
software complexity, open source 

I. INTRODUCTION 

Software is not liable to wear and tear nevertheless it 
could turn out to be unusable if it is not swotted in retort to 
always changing user’s needs. It is necessary to evolve 
software so that it can be used for a longer period of time. 
Lehman et al has made wide exploration on the evolution of 
big and extensive survived software [1].Basically Lehman’s 
laws of software evolution specify that incessant change 
and development is must for any kind of software to be 
long-lived. The laws also represents that software becomes 
more and more complex plus it become more difficult to 
add new features to it over the time period i.e. due to 
changes and growth. No doubt there are more than decades 
ever since the laws being projected however there are very 
less experiential studies that provision the validating of 
laws to software systems. The free availability of source 
code of an open source software is delivering a support 
towards the study of software evolution.  

Basically the work offered in this paper is based on the 
study of multiple versions of open source software i.e. 
JStock. The software used for study have been written in 
Java. The main aim of the paper is to observe the 
applicability of Lehman’s laws towards object oriented 
software system. We have calculated the object oriented 
metrics, proposed by Chidamber and Kemerer[2] , for the 
software. The calculated metrics statistics for different 
versions has been used as the root for investigating the laws 
of software evolution. Another reason of the proposed study 
is to categorise structural metrics which could facilitate to 
discrete more than one aspirant version of a software 
system when shaping the contents of an open source release. 
The paper is organized as follows. 

Section 2 represents the background history of software 
evaluation followed by related work presented in section 3. 
Section 4 presents a concise overview of software metrics 
used in this study .Section 5 gives an introduction to open 
source software. Section 6 presents the study of software 
evaluation over different versions of software component. 
Section 6 represents the analysis of statistical description 
for various metrics and the last section presents conclusions 
and future scope. 

II. BACKGRUOND & HISTORY

A. Lehman’s law of Software Evolution [1] 

 Continuing Change (1974): The E-type systems
ought to be unceasingly changed so as to be used for
a longer period of time. The essential changes might
be entitled for in response to change in environment,
as a bug fix exercise, preventive maintenance activity
etc. leading to change.

 Increasing Complexity (1974): The complexity of an
E-type system increases unless some preventive
maintenance is done to control it. Increase in
complexity may arise due to number of changes or
due to addition of more functionalities leading to
more interaction.

 Self-Regulation (1974): Evolution process of E-type
system is self-regulatory. This means that growth rate
of is regulated by the maintenance process. There is a
balance between what is desired to be changed and
what can actually be achieved. In order to have a
smooth evolution process, the limitations on growth
rate should be accepted.

 Conservation of Organizational Stability (invariant
work rate) (1980): Evolution process of software
conserves the organizational stability. The work rate
of an organization evolving a large software tends to
remain constant. This means it is hard to change the
staff who has been working on evolving software.
The average global effective rate in evolving
software tends to remain constant over product
lifetime.

 Conservation of Familiarity (1980): The familiarity
with evolving E-type software is conserved. A huge
change that might cause lack of familiarity of staff
members involved with the evolving software is
avoided. For small changes the familiarity of
software is easily achieved by the personnel involved
with the software. Hence the average incremental
growth remains constant as the software evolves.

Sandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1565-1568

www.ijcsit.com 1565



 Continuing Growth (1980): The functional content of 
E-type systems must be continually enhanced in 
response to user feature request in order to maintain 
user satisfaction over its life period. 

 Declining Quality (1996): The Evolution process 
causes decline in the quality of evolving software. 

III.  RELATED WORK  

This section describe the various work done in the field 
of software evaluation. The forerunner work in the field of 
software evolution has been done by Belady and Lehman[1]. 
They conducted the study of 20 releases of OS/360 
operating system. The study led them postulate the laws of 
software evolution. The laws were further developed and 
published in [7][8]. 

 Israeli [9] used 810 versions of the Linux kernel, 
released over a period of 14years, to characterize the 
system's evolution, using Lehman's laws of software 
evolution as a basis. They investigate different possible 
interpretations of these laws, as reflected by different 
metrics that can be used to quantify them. 

Stephen Cook et al [10] proposed refinement of SPE 
which was expected to provide a more productive basis for 
developing testable hypotheses and models about possible 
differences in the evolution of E- and P-type systems than 
provided by the original scheme. 

IV. METRICS USED IN THIS STUDY 

This section represents the metric used in this study for 
software evaluation and statistical description. The details 
of metrics that we investigated are the following: 

1)  LOC:  Line of code is the size related metric. It is a 
count of total number of lines in the selected elements that 
contain characters except white space and comments. [4] 

2)  CBO: “Coupling between Object Classes” is the 
measure of all those classes with which the given class is 
coupled [2]. 

3)  RFC: “Response for Class” metric for a class is the 
measure of number of methods that can be invoked in 
response to a message received by an object of the class [2]. 

4)  NPM: “Number of public methods” of a class 
represents the count of total number of public methods in a 
class[2]. 

5)  LCOM: “Lack of Cohesion in Methods” is the class 
level metric that count the set of methods in a class which is 
disjoint with respect to members of a class being accessed 
by them[2]. 

6)  Classes: This metric symbolizes all the available 
classes in the selected project. Classes, are user defined data 
structure, consists of data members and methods that 
exemplify the deeds of class in object oriented 
programming. [3] 

7)  Class Size: It is the fraction of the number of lines of 
code divided by the total number of classes.[3] 

8)  Complexity: It is useful for discovering how complex 
the code is? As classify by McCabe (1976), this is a metric 

which relies on a graph hypothesis that represents the total 
number of linearly free path in a related graph [4]. Mc.Cabe 
describe complexity as 

V(G)= e-n+2, Where V(G) is cyclomatic 
complexity of particular flow graph G., e= total number of 
edges in graph G and n= total number of nodes in graph G. 

V. CASE STUDY  

In this paper an evaluation has been illustrated by using 
software JStock from open source repository 
http://sourceforge.net/projects/jstock/. Basically the JStock 
[5], an open source software, purely coded in java. This has 
been chosen due to high downloading rate. Multiple 
versions of the JStock software has been downloaded and 
after that the metrics are calculated and arranges in tabular 
form to further perform operations.  

B. JStock- Free Stock Market Software[5] 

JStock is free stock market software for many countries. 
It provides Stock watchlist, intraday stock price snapshot, 
Stock indicator editor, Stock indicator scanner and Portfolio 
management etc. Free SMS/email alert supported. We 
download multiple versions for our case study from 
repository http://sourceforge.net/projects/jstock/ and 
perform software evaluation and statistical analysis among 
different metrics of each version.  

VI. ANALYSIS OF EVALUATION OF JSTOCK 

In this section we examine the Lehman’s laws of 
software evolution with the help of several metrics which 
are computed for multiple versions of JStock. From the 
evaluation it is concluded that some of the laws have a 
direct relevance to the computed metrics whereas for some 
of the laws we did not find direct relevance to software 
metrics. Software is not liable to to wear and tear 
nevertheless it could turn out to be unusable if it is not 
swotted in retort to always changing user’s needs. It’s 
necessary to grow for any software in order to be used for 
large era Lehman et al has done extensive study on the 
development and evolution of vast and broad lived software 
[1].  

Lehman’s laws of software evolution states that incessant 
transformation and development is mandatory for 
maintaining the software long-lasting. According to 
Lehman’s laws of software evolution the continuous change 
and growth is highly required for maintaining the software 
for large period of time. These laws also explains that as the 
time passes away, it become more complex for the addition 
of different functionalities to software component due to 
changes and growth. Hence it turn out to be more necessary 
to investigate whether the open source code permits speedy 
evolution or not. 

The figure 1 shows the growth curve of different metrics 
for the different versions of JStock i.e. open source 
software. In the below graph it can be seen that software 
has grown up in size can be resolute by perceiving the 
variation of size metrics over consequent releases. Figure 1 
represents the linear growth curve for each calculated 
metrics for different versions. Growth of evolving software 
can be calculated by observing variance in the size metric in 

Sandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1565-1568

www.ijcsit.com 1566



terms of continuing growth, RFC in terms of feedback, 
CBO, LCOM, classes, class size etc. as a functional metrics. 

 

 

FIG 1:- GROWTH CURVE OF DIFFERENT METRICS FOR DIFFERENT 

VERSIONS OF JSTOCK 

VII. MEASUREMENT AND CATEGORIZATION  OF  OPEN  

SOURCE CODE QUALITY 

Software with high quality is always a foremost need of 
user. Always there is a trend of utilisation of software 
component in software application development because of 
its obvious benefit of low cost, great quality and lesser time 
for the development of applications etc. Hence it is 
necessity for the open source code to measure its quality. 
We selected to examine source code metrics because the 
code quality is resolute due to lot of elements & measuring 
it is far from trivial [6].We select these metrics as we can 
easily calculate these metrics by virtue of different metric 
tools.  

The table 1 signifies the relationship between quality 
criterion and corresponding metrics. Table 1 clearly 
represents that the functionality the system can be 
calculated by metrics response for class, coupling between 
objects and number of public methods. Deployablity of the 
system can be checked by measuring class size and 
complexity metrics. The metrics lines of code and classed 
are used to measure the scalability characteristic of quality.  

TABLE I 
RELATIONSHIP BETWWEN  QUALITY CRITERIA AND METRICS 

Quality Criterion  Associated Metric 

Functionality RFC, CBO,NPM 

Scalability LOC,classes 

Deploybility Complexity, class size 

 

Table 2 presents descriptive statistics for software 
metrics calculated for an open source software. Descriptive 
Statistic is the discipline of quantitatively describing the 
main features of a collection of information or quantitative 
description itself. 

In our research work, source code or quality metrics are 
calculated for huge no. of multiple versions of Jstock and 
arranged in tabular form. For the statistical analysis, each 
metric was considered as a random numerical variable. 

Statistical analysis is a science of collecting, exploring 
and presenting large amount of data to discover underlying 
patterns and trends. Each module of an application has been 
measured and the mean value of each metric has been 
computed crosswise an application. Descriptive statics 
across all application is given in table 2.  

For each metric, the minimum, maximum, mean, 
standard deviation and median values are calculated. In 
some belonging, awfully varying values have been 
discovered, but this is normal given the wealth of open 
source examined and the large number of peoples that have 
been concerned in the development of the software. For 
LOC the maximum value is extremely high. Standard 
deviation for lines of code and classes are also high and 
alternatively it leads to high value for response for class, 
NPM, coupling between objects etc. The achieved result for 
complexity are seemed to be generally far-away from the 
formal choice, but this is most likely be as an effect of poor 
classification and understanding of the impact of metric on 
a quality of code. The below table 2 give the complete 
representation of all the factors of statistical analysis i.e. 
minimum, maximum, mean, standard deviation and media 
for all the source code or quality metrics. 

VIII. CONCLUSIONS 

In this paper we offered the study centered on open 
source software. The applicability of Lehman’s laws of 
software evolution towards open source software and 
statistical analysis were studied in the light of number of 
metrics. 

Our aim was actually to explore the benefits that source 
code evaluation and statistical analysis of metrics can make 
available to open source and provide clues for further 
empirical research. This study has opened up more 
opportunities for research in the field of software evolution 
and quality measurement. 

ACKNOWLEDGMENT 

I would like to gratefully and sincerely thank to Ms 
Navjot Kaur for giving his valuable time for guidance in 
research work and support during the research period. 
Finally, I honestly thank to my parents, family, and friends, 
who provide the advice and financial support. The product 
of this research paper would not be possible without all of 
them. 

 

 

 

 

Sandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1565-1568

www.ijcsit.com 1567



TABLE III 
STATISTICAL ANALYSIS OF CALCULATED METRICS 

 Minimum Maximum Mean Standard Deviation Median 

LOC 19537 27756 22948 2878.8 21327 

RFC 417 458 444 13.56 446 

CBO 71 76 74.4 1.58 74 

NPM 16 20 19.11 1.36 20 

Classes 172 246 202.3 28.601 183 

Class Size 31.06 33.03 31.94 0.72 32.04 

Complexity 1.96 50 30.32 16.44 26 

REFERENCES 
[1] Belady, L. A. and Lehman, M.M. 1976. A model of large program 

development. IBM Syst. J. 15, 225–252. 
[2] Chidamber, S.R. and Kemerer, C. F. 1994. A metrics suite for 

object oriented design. IEEE Transaction on. Software Engineering. 
20, 6, 476–493. 

[3] Sanjay Kumar Dubey, Amit Sharma & Dr. Ajay Rana, “Comparison 
Study and Review on Object- Oriented Metrics”, Global Journal of 
Computer Science and Technology, Volume 12 Issue 7 Version 1.0 
April 2012 

[4] Amit Sharma, Sanjay Kumar Dubey “Comparison of Software 
Quality Metrics for Object-Oriented System”, IJCSMS International 
Journal of Computer Science & Management Studies, Special Issue 
of Vol. 12, June 2012  

[5] http://sourceforge.net/projects/jstock/ 
[6] Ioannis Stamelos , Lefteris Angelis, Apostolos Oikonomou & 

Georgios L. Bleris “Code quality analysis in open source software 
development”, Info Systems J (2002) 12, 43–60, published in Wiley 
Online Library 

[7] Lehman, M.M. 1980. Programs, life cycles, and laws of software 
evolution. In Proceedings of the IEEE (Special issue of Software 
Engineering., 68,9, 1060 – 1076. 

[8] Lehman, M.M. 1996. Laws of software evolution revisited. In 
Software Process Technology, ser. Lecture Notes in Computer 
Science. 1149, 108-124. http://dx.doi.org/10.1007/BFb0017737 

[9] Israeli, A. and Feitelson, D.G. 2010. The linux kernel as a case 
study in software evolution. Journal of Systems and Software. 83, 3, 
485 – 501. 

[10] Cook, S., Harrison, R., Lehman, M.M. and Wernick, P. 2006. 
Evolution in software systems: foundations of the spe classification 
scheme. Journal of Software Maintenance and Evolution: Research 
and Practice.18, 1, 1-35. 

 
 

Sandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1565-1568

www.ijcsit.com 1568




